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Abstract
The effects of the intrinsic dipolar magnetic field on the energy levels and charge density
distribution of a spherical magnetic semiconductor nanoparticle have been investigated in the
framework of quantum mechanics using the finite element method. It was found that the dipolar
magnetic field not only removes the degeneracy of the energy levels, resulting in a redistribution
of carriers, but also directly changes the charge density distribution, leading to a modification of
the surface charge density with a strong influence upon the colloidal stability. These effects
strongly depend on both the nanoparticle magnetization value and the nanoparticle size. The
bigger the nanoparticles, the larger the effects of the intrinsic dipolar magnetic field upon the
charge density distribution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic fluids represent a very special class of colloids
in which the dispersed nanosized particles, usually metal
oxide–semiconductor ones, possess permanent magnetic
moments [1]. They present a variety of fascinating properties
which demonstrate potential applications in spintronics,
quantum information processes and medicine [2, 3]. In spite
of the great experimental and theoretical efforts, however,
the long term colloidal stability still remains a challenge
for applications [2, 3]. Thus, any effort towards the
understanding of basic aspects for further improvement of
the magnetic fluid (MF) colloidal stability has a major
impact on the applied research [4]. For about six decades
the classical Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory has been used as the starting point for analyzing the
huge amount of experimental data related to colloids [5].
Refinements of the keystone double-layer model for the
metal oxide–electrolyte interface, for instance the three-
layer model [6] and the four-layer model [7], have made

an important progress in illustrating fine structures of the
solid–liquid interfaces in colloidal systems. Nevertheless,
neither the DLVO theory nor any of its refinements provides
a first-principles-based microscopic view of the mechanism
through which the nanoparticle’s charge density distribution
in ionic colloids sets up, owing to the absence of a
proper quantum mechanical description of the charge-transfer
mechanism across the nanoparticle solid–liquid interface. The
very first attempt to solve this problem was accomplished
by self-consistently solving the coupled three-dimensional
Schrödinger and Poisson equations in the frame of the
effective-mass approximation, using the finite difference
method (FDM) [8]. For the suspended MF nanoparticle
the surface charge density, electronic structure and Fermi
energy were studied as a function of the band offset at the
solid–liquid interface [8]. The success of such formulations
for spherical metal oxide nanoparticles dispersed in aqueous
medium permits us to investigate the size dependence of the
charge density distribution at a given pH and of band offset
values [9, 10]. The influence of the nanoparticle’s deviation
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Figure 1. Schematic diagram of the uniformly magnetized spherical
nanoparticle (Fe3O4) with magnetization M immersed in an aqueous
medium.

from the spherical shape on the charge density distribution was
also reported [11–13]. Furthermore, excellent agreement [14]
of the titration curves of ionic colloids, obtained from quantum
mechanical models, with the experimental data available in the
literature [15–17] has been achieved. Although experimental
observations show that the intrinsic dipolar magnetic field
associated with the magnetic nanosized particle is crucial for
the stability of ionic magnetic fluids, this point has not been
addressed theoretically to date, mainly due to the complicated
calculation involved. In this paper, the effect of the intrinsic
dipolar field upon the charge density distribution in ionic
magnetic colloids is derived using the quantum mechanical
viewpoint. The quantum mechanical equation involved in the
problem formulation is numerically solved in the framework of
finite element method (FEM) taking into account the effects of
the nanoparticle size and shape [18]. This paper is organized as
follows. Section 2 describes how the intrinsic dipolar field is
introduced into the Schrödinger equation and how Galerkin’s
weighted residue method [18] is used to obtain the finite
element matrix form of this equation. Section 3 contains the
main contribution of the paper: calculation of the effects of the
dipolar magnetic field on the charge density distribution due
to changes on the particle size and particle magnetic moment.
Finally, section 4 presents our conclusions.

2. Theoretical model

The effect of the dipolar magnetic field on the charge density
distribution of a typical spherical magnetic nanoparticle
(Fe3O4 for instance) immersed in an aqueous medium has
been investigated, using a truly three-dimensional model, as
shown schematically in figure 1. The spherical nanoparticle
(radius R), with uniform permanent magnetization (

−→
M =

M0
−→z ), is surrounded by low or high pH aqueous medium.

The magnetization gives equivalent currents. These currents
produce a constant magnetic field inside and a dipole magnetic
field outside the nanoparticle. In spherical coordinates (r , θ , ϕ)
the magnetic vector potential

−→
A reads

−→
A = 4π

3
M0 R2

(
r<

r 2
>

)
sin θ · êφ, (1)

where r< (r>) is the smaller (larger) of r and R, and êφ is the
unit vector along the ϕ direction.

Taking into account the symmetry of the magnetic vector
potential

−→
A , it is convenient to solve the corresponding

Schrödinger equation in cylindrical coordinates. Utilizing
atomic units, in which the Bohr radius is 0.529 Å and
the Rydberg energy is 13.6 eV, the electron envelope
wavefunctions (�nl(ρ, z)) and the energy values (Enl) are
calculated using

[
−∇

(
1

m(r)
∇

)
+ Veff(ρ, z)

]
�nl(ρ, z) = Enl�nl(ρ, z),

(2)
where ∇2 is the two-dimensional Laplace operator in the
(ρ, z)-plane (ρ = r sin θ , z = r cos θ ), l = 0, 1, 2, . . ., is the
quantum number of the angular momentum (L) with respect
to the z-axis, n is the principal quantum number, and m(r) is
the carrier effective mass. The effective potential (Veff(ρ, z))
in equation (2) is given by

Veff(ρ, z) = V (ρ, z) + 1

m(r)

(
l

ρ

)2

− αl M

m(r)

(
R

r>

)3

+ β

m(r)

(
R

r>

)6

(ρM)2 , (3)

where α = 8
√

2π
3c , β = 32π2

9c2 , c = 274.071 98, M = M0 in
units of Oe/(4.425 37 × 104). In the expression for Veff(ρ, z),
the first term is the quantum confining potential induced by
the difference in band gap between the nanoparticle and its
surrounding, the second term describes the potential associated
with the angular momentum and the last two terms represent
potentials induced by the magnetization of the magnetized
nanoparticle.

In the framework of the FEM, equation (2) can be
solved as follows. First, the entire region of the system
is divided into elements in real space. For simplicity, we
use triangular element meshes. Then any field quantities,
e.g. wavefunctions, the wavefunction gradient and the effective
potential, are expressed in terms of discretized values at the
nodes, whereas values within the elements are determined
by linear interpolation using linear shape functions N(ρ, z).
Thus, for particular shape functions N(ρ, z) [18, 19], any field
in the kth element is written as

�
(k)
nl =

3∑
j=1

�
(k)
j N j (ρ, z), (4)

where the coefficients in the summation are the values of the
wavefunction at individual nodes. Finally, using Galerkin’s
weighted residue method [18] one obtains the finite element
matrix form of the Schrödinger equation in the kth element as

H (k)
i j · �(k)

j = λnl · D(k)
i j · �(k)

j , (5)

where the indices i and j range over 1–3. The repeated indices
indicate a summation whereas the local element stiffness
matrices H (k)

i j and mass matrices D(k)
i j are given by

H (k)
i j =

∫∫
(k)

[
1

m(r)
∇Ni ·∇N j + Veff(ρ, z)·Ni ·N j

]
ρ dρ dz

(6)
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Figure 2. Electron energy as a function of radius of spherical magnetic nanoparticles, for (a) M0 = 0 Oe and (b) M0 = 470 Oe.

and

D(k)

i j =
∫ ∫

(k)

Ni · N j · ρ dρ dz. (7)

Once the local matrix equations have been calculated for each
element, the elements must be jointed in such a way that
the wavefunction and its derivatives are continuous at the
boundaries. The continuity of the wavefunction is achieved
by mapping the local matrix equations for each element onto a
single global matrix equation, given by

Hi j · � j = λnl · Di j · � j . (8)

This generalized eigenvalue problem is solved for the
eigenvalues (λnl) and corresponding eigenfunctions (� j ) using
standard numerical procedures available in numerical analysis
packages [18].

3. Results and discussion

The experimental observations indicate that both geometrical
(size and shape) and physical (effective carrier mass, dielectric
constant, band offset, and magnetization) parameters of a
magnetic semiconductor nanoparticle play an important role
in determining the energy spectrum, number of confined
states, and average intershell spacing. All these quantities
have a strong impact upon the colloidal stability of ionic
colloids based on magnetic semiconductor nanoparticles. To
understand the effect of the dipolar magnetic field on the
stability of ionic MFs (e.g., Fe3O4 nanoparticles dispersed
in low or high pH aqueous medium), numerical calculations
were performed. The following parameters were used in our
calculation: m(r) = 0.37, V0 = 400 meV, and pH12. The
probability distribution is defined as ρ|�nl |2. The energy
reference is chosen at the bottom of the conduction band of
the dot material. It is important to emphasize that in the FEM
computation the number of elements (NE), the cutoff position
(rc) at which the electron wavefunction is zero and the degrees
of the interpolation functions are crucial for achieving high
numerical accuracy and fast convergence. Therefore, careful
attention should be paid while choosing these values [18].

The size dependence of the carrier energy for spherical
Fe3O4 nanoparticles is shown in figures 2(a) and (b) for

M0 = 0 Oe and M0 = 470 Oe, respectively. It is
found that in both cases the carrier energies decrease with
increasing nanoparticle size (volume), indicating a reduced
quantum confinement effect. In the case of figure 2(a) (M0 =
0 Oe) there is a degeneracy for each energy level (Enl). For
instance, for the ground state (E10) there is just one atomic
orbital and one electron density distribution. However, for
the first excited state there are three different atomic orbitals
(�1 −1, �11, and �20) and three different electron density
distributions, all states possessing the same energy value (E20).
Thus, there are three different ways in which the electronic
charge may be distributed in three-dimensional space while
still possessing the same energy. The dipolar magnetic field of
the magnetic nanoparticles, however, removes this degeneracy,
splitting the energy level into three distinct energies, as shown
in figure 2(b). In addition, the separation among them strongly
depends upon the nanoparticle size. For nanoparticles with
radius in the range of 2–10 nm, one finds the energy splitting
increasing as the nanoparticle size increases.

Figure 3(a) illustrates the carrier energy as a function
of the magnetization for nanoparticles with R = 3 nm.
The energy levels with different l values present different
behaviors. Nevertheless, all energy levels show an almost
linear response to the dipolar magnetic field. The sensitivity
(�E) of the energy level with respect to the dipolar field,
which is defined by the difference between the energy at M0 =
900 Oe and that at M0 = 0 Oe (E0), is shown in figure 3(b).
It is interesting to note that the energy levels for larger l values
are more sensitive to the dipolar magnetic field than those for
smaller l values.

The effect of the magnetization upon the system’s
behavior can be observed for a nanoparticle with R = 4 nm,
as shown in figure 4. The crossover between different energy
levels occurs at lower magnetization values for R = 4 nm
than for R = 3 nm. In addition, obvious nonlinear magnetic
response behavior is also observed. This nonlinearity is
attributed to the competition between the quantum confinement
effects produced by the barrier height and the magnetic field
strength. As the nanoparticle size increases the magnetic field
effect becomes the dominating factor.

Figures 5(a)–(c) illustrate the effect of the dipolar field
upon the nanoparticle (R = 10 nm) charge density probability
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Figure 3. Dipolar field dependence of (a) carrier energy and (b) sensitivity (�E) of the energy levels for R = 3 nm. The sensitivity is defined
as the difference between the energy for M0 = 900 Oe and the energy for M0 = 0 Oe (E0).

Figure 4. Carrier energy as a function of magnetization for
R = 4 nm particles.

for M0 = 0 Oe, M0 = 500 Oe and M0 = 900 Oe, respectively.
Note that the electron density is expressed in terms of the
number of electronic charges per unit space volume. Then,
the atomic unit of electron density distribution is e/a3

0. It
is found that the charge density probability distribution is
dramatically squeezed by the dipolar magnetic field in the
plane perpendicular to the magnetization direction. As a result,

it introduces a strong polarization of the chemical bounds
between the nanoparticle surface and the surrounding aqueous-
related molecular species (for instance OH−, OH2, and OH+

3 ).
Therefore, a considerable effect on the colloidal stability of
ionic magnetic fluids is expected. In addition, as a result
of the nonuniform anchoring of the molecular species at the
nanoparticle surface, one expects a strong influence upon the
magneto-optical properties of magnetic fluids.

Figures 6(a) and (b) show the maximum charge density
and the corresponding position as a function of the nanoparticle
magnetization, respectively. It is found that the maximum
charge density increases with increasing magnetization.
However, the corresponding position r = √

ρ2 + z2 shows an
opposite behavior.

4. Conclusions

The finite element method was successfully applied to solve
the challenging nanoscaled problem of finding the effects
of the dipolar field on the charge density distribution in
a charged magnetic semiconductor nanoparticle. Once the
elements shape can be chosen arbitrarily and as long as
the boundary conditions are satisfied, the method provides
high accuracy results. In addition, since the basis

Figure 5. Contour maps of charge density distributions of 4f atomic orbital for R = 10 nm nanoparticles at (a) M0 = 0 Oe, (b) M0 = 500 Oe,
and (c) M0 = 900 Oe.
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Figure 6. Maximum charge density (a) and its corresponding position (b) as a function of the nanoparticle magnetization.

functions are given by strictly local polynomials in real
space, the method allows a controlled convergence of the
solutions. Permanently magnetized spherical nanoparticles
(magnetization M) generate a uniform magnetic field in the
inner region and a dipolar magnetic field in the outer region.
Effects of the magnetic field on both the carrier energy
spectrum and charge density distribution were investigated
from the quantum mechanical viewpoint. It was found that
the dipolar magnetic field removes the degeneracy of the
energy levels, promoting the carrier redistribution among them.
Furthermore, the dipolar field changes the charge density
distribution, leading to a redistribution of the surface charge
density. As a result, it should influence the colloidal stability
of ionic magnetic fluids remarkably strongly. These effects
depend not only on the magnetization value but also on the
nanoparticle size. The larger the nanoparticle size, the bigger
the dipolar magnetic field effects. Our observations can be
discussed in terms of the competition between the quantum
confinement effects introduced by both the particle size and
the strength of the dipolar magnetic field.

Acknowledgments

This work was supported by the Brazilian agencies CNPq,
FAPEMIG, CAPES, and FINATEC.

References

[1] Rosensweig R E 1985 Ferrohydrodynamics (New York:
Cambridge University Press) p 1237

[2] Berkovsky B M, Medvedev V F and Krakov M S 1993
Magnetic Fluids-Engineering Applications (Oxford: Oxford
University Press)

[3] Hafeli U, Schutt W and Zborowski M 1997 Scientific and
Clinical Applications of Magnetic Carriers
(New York: Plenum)

[4] Berkovski B and Bashtovoy V 1996 Magnetic Fluids and
Applications Handbook (New York: UNESCO)

[5] Churaev N V 1999 Adv. Colloid Interface Sci. 83 19–32
[6] Righetto L, Azimonti G, Missana T and Bidoglio G 1995

Colloids Surf. A 95 141–57
[7] Charmas R, Piazecki W and Rudzinski W 1995 Langmuir

11 3199–210
[8] Qu F and Morais P C 1999 J. Chem. Phys. 111 8588–94
[9] Qu F and Morais P C 2000 J. Phys. Chem. B 104 5232–6

[10] Qu F and Morais P C 2001 IEEE Trans. Magn. 37 2654–6
[11] Qu F, Oliveira R H and Morais P C 2004 J. Magn. Magn.

Mater. 272–276 1668–9
[12] Qu F, Santos D R Jr, Dantas N O, Monte A F G and

Morais P C 2004 Physica E 23 410–5
[13] Santos D R Jr, Qu F, Alcalde A M and Morais P C 2005

Physica E 26 331–6
[14] Morais P C and Qu F 2002 J. Magn. Magn. Mater. 252 117–9
[15] Tronc E, Jolivet J P, Lefebvre J and Massart R 1984 J. Chem.

Soc. Faraday Trans. I 80 2619–29
[16] Bacri J C, Perzynski R, Salin D, Cabuil V and Massart R 1989

J. Colloid Interface Sci. 132 43–53
[17] Tourinho F A, Campos A F C, Aquino R, Lara M C F L and

Depeyrot J 2002 J. Magn. Magn. Mater. 252 29–31
[18] Qu F Y, Alcalde A M, Almeida C G and Dantas N O 2003

J. Appl. Phys. 94 2130–9
[19] Johnson H T, Freund L B, Akyuz C D and Zaslavsky A 1998

J. Appl. Phys. 84 3714–25

5

http://dx.doi.org/10.1016/S0001-8686(98)00067-0
http://dx.doi.org/10.1016/0927-7757(94)02990-A
http://dx.doi.org/10.1021/la00008a053
http://dx.doi.org/10.1063/1.480200
http://dx.doi.org/10.1021/jp993783n
http://dx.doi.org/10.1109/20.951264
http://dx.doi.org/10.1016/j.jmmm.2003.12.1076
http://dx.doi.org/10.1016/j.physe.2003.12.137
http://dx.doi.org/10.1016/j.physe.2004.08.072
http://dx.doi.org/10.1016/S0304-8853(02)00612-1
http://dx.doi.org/10.1039/f19848002619
http://dx.doi.org/10.1016/0021-9797(89)90214-2
http://dx.doi.org/10.1016/S0304-8853(02)00721-7
http://dx.doi.org/10.1063/1.1586954
http://dx.doi.org/10.1063/1.368549

	1. Introduction
	2. Theoretical model
	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References

